17 research outputs found

    Is HLA type a possible cancer risk modifier in Lynch syndrome?

    Get PDF
    Lynch syndrome (LS) is the most common inherited cancer syndrome. It is inherited via a monoallelic germline variant in one of the DNA mismatch repair (MMR) genes. LS carriers have a broad 30% to 80% risk of developing various malignancies, and more precise, individual risk estimations would be of high clinical value, allowing tailored cancer prevention and surveillance. Due to MMR deficiency, LS cancers are characterized by the accumulation of frameshift mutations leading to highly immunogenic frameshift peptides (FSPs). Thus, immune surveillance is proposed to inhibit the outgrowth of MMR-deficient cell clones. Recent studies have shown that immunoediting during the evolution of MMR-deficient cancers leads to a counter-selection of highly immunogenic antigens. The immunogenicity of FSPs is dependent on the antigen presentation. One crucial factor determining antigen presentation is the HLA genotype. Hence, a LS carrier's HLA genotype plays an important role in the presentation of FSP antigens to the immune system, and may influence the likelihood of progression from precancerous lesions to cancer. To address the challenge of clarifying this possibility including diverse populations with different HLA types, we have established the INDICATE initiative (Individual cancer risk by HLA type, ), an international network aiming at a systematic evaluation of the HLA genotype as a possible cancer risk modifier in LS. Here we summarize the current knowledge on the role of HLA type in cancer risk and outline future research directions to delineate possible association in the scenario of LS with genetically defined risk population and highly immunogenic tumors.Peer reviewe

    Sulfatase-2 from Cancer Associated Fibroblasts: An Environmental Target for Hepatocellular Carcinoma?

    Get PDF
    Introduction: Heparin sulphate proteoglycans in the liver tumour microenvironment (TME) are key regulators of cell signalling, modulated by sulfatase-2 (SULF2). SULF2 overexpression occurs in hepatocellular carcinoma (HCC). Our aims were to define the nature and impact of SULF2 in the HCC TME. Methods: In liver biopsies from 60 patients with HCC, expression and localization of SULF2 were analysed associated with clinical parameters and outcome. Functional and mechanistic impacts were assessed with immunohistochemistry (IHC), in silico using The Cancer Genome Atlas (TGCA), in primary isolated cancer activated fibroblasts, in monocultures, in 3D spheroids, and in an independent cohort of 20 patients referred for sorafenib. IHC targets included αSMA, glypican-3, β-catenin, RelA-P-ser536, CD4, CD8, CD66b, CD45, CD68, and CD163. SULF2 impact of peripheral blood mononuclear cells was assessed by migration assays, with characterization of immune cell phenotype using fluorescent activated cell sorting. Results: We report that while SULF2 was expressed in tumour cells in 15% (9/60) of cases, associated with advanced tumour stage and type 2 diabetes, SULF2 was more commonly expressed in cancer-associated fibroblasts (CAFs) (52%) and independently associated with shorter survival (7.2 vs. 29.2 months, p = 0.003). Stromal SULF2 modulated glypican-3/β-catenin signalling in vitro, although in vivo associations suggested additional mechanisms underlying the CAF-SULF2 impact on prognosis. Stromal SULF2 was released by CAFS isolated from human HCC. It was induced by TGFβ1, promoted HCC proliferation and sorafenib resistance, with CAF-SULF2 linked to TGFβ1 and immune exhaustion in TGCA HCC patients. Autocrine activation of PDGFRβ/STAT3 signalling was evident in stromal cells, with the release of the potent monocyte/macrophage chemoattractant CCL2 in vitro. In human PBMCs, SULF2 preferentially induced the migration of macrophage precursors (monocytes), inducing a phenotypic change consistent with immune exhaustion. In human HCC tissues, CAF-SULF2 was associated with increased macrophage recruitment, with tumouroid studies showing stromal-derived SULF2-induced paracrine activation of the IKKβ/NF-κB pathway, tumour cell proliferation, invasion, and sorafenib resistance. Conclusion: SULF2 derived from CAFs modulates glypican-3/β-catenin signalling but also the HCC immune TME, associated with tumour progression and therapy resistance via activation of the TAK1/IKKβ/NF-κB pathway. It is an attractive target for combination therapies for patients with HCC

    How Should We Test for Lynch Syndrome? A Review of Current Guidelines and Future Strategies

    No full text
    International guidelines for the diagnosis of Lynch syndrome (LS) recommend molecular screening of colorectal cancers (CRCs) to identify patients for germline mismatch repair (MMR) gene testing. As our understanding of the LS phenotype and diagnostic technologies have advanced, there is a need to review these guidelines and new screening opportunities. We discuss the barriers to implementation of current guidelines, as well as guideline limitations, and highlight new technologies and knowledge that may address these. We also discuss alternative screening strategies to increase the rate of LS diagnoses. In particular, the focus of current guidance on CRCs means that approximately half of Lynch-spectrum tumours occurring in unknown male LS carriers, and only one-third in female LS carriers, will trigger testing for LS. There is increasing pressure to expand guidelines to include molecular screening of endometrial cancers, the most frequent cancer in female LS carriers. Furthermore, we collate the evidence to support MMR deficiency testing of other Lynch-spectrum tumours to screen for LS. However, a reliance on tumour tissue limits preoperative testing and, therefore, diagnosis prior to malignancy. The recent successes of functional assays to detect microsatellite instability or MMR deficiency in non-neoplastic tissues suggest that future diagnostic pipelines could become independent of tumour tissue

    A factorial randomised trial investigating factors influencing general practitioners’ willingness to prescribe aspirin for cancer preventive therapy in Lynch syndrome: a registered report

    No full text
    We investigated the optimal type and level of information to communicate with GPs to increase willingness to prescribe aspirin for colorectal cancer prevention. We recruited GPs in England and Wales (n=672) to an online survey with a 2 by 3 factorial design. GPs were randomised to one of eight vignettes describing a hypothetical patient with Lynch syndrome recommended to take aspirin by a clinical geneticist. Across the vignettes, we manipulated the presence or absence of three types of information: 1) existence of NICE guidance; 2) results from the CAPP2 trial; 3) information comparing risks/benefits of aspirin. We estimated the main effects and all interactions on the primary (willingness to prescribe) and secondary outcomes (comfort discussing aspirin)

    Somatic Mitochondrial DNA Deletions Accumulate to High Levels in Aging Human Extraocular Muscles

    No full text
    Extraocular muscles accumulate cytochrome c oxidase (COX)-deficient fibers from an earlier age and at a much faster rate than do skeletal muscles, suggesting an accelerated aging process. Most of these COX-deficient fibers harbor high levels of clonally expanded, somatic mitochondrial DNA deletions

    Mitochondrial DNA mutations in human colonic crypt stem cells

    No full text
    The mitochondrial genome encodes 13 essential subunits of the respiratory chain and has remarkable genetics based on uniparental inheritance. Within human populations, the mitochondrial genome has a high rate of sequence divergence with multiple polymorphic variants and thus has played a major role in examining the evolutionary history of our species. In recent years it has also become apparent that pathogenic mitochondrial DNA (mtDNA) mutations play an important role in neurological and other diseases. Patients harbor many different mtDNA mutations, some of which are mtDNA mutations, some of which are inherited, but others that seem to be sporadic. It has also been suggested that mtDNA mutations play a role in aging and cancer, but the evidence for a causative role in these conditions is less clear. The accumulated data would suggest, however, that mtDNA mutations occur on a frequent basis. In this article we describe a new phenomenon: the accumulation of mtDNA mutations in human colonic crypt stem cells that result in a significant biochemical defect in their progeny. These studies have important consequences not only for understanding of the finding of mtDNA mutations in aging tissues and tumors, but also for determining the frequency of mtDNA mutations within a cell
    corecore